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Abstract

Serum-and-glucocorticoid-inducible-kinase-1 (SGK1) is under regulation of several hormones, 
mediators and cell stressors. More specifically, SGK1 expression is particularly sensitive to glu-
cocorticoids, mineralocorticoids, and TGFβ. Moreover, SGK1 expression is exquisitely sensitive 
to hypertonicity, hyperglycemia, and ischemia. SGK1 is activated by insulin and growth factors 
via phosphatidylinositol-3-kinase, 3-phosphoinositide dependent-kinase PDK1, and mTOR. 
SGK1 up-regulates the Na+/K+-ATPase, a variety of carriers (e.g. NCC, NKCC, NHE1, NHE3, 
SGLT1, several amino acid transporters) and many ion channels (e.g. ENaC, SCN5A, TRPV4-6, 
Orai1/STIM1, ROMK, KCNE1/KCNQ1, GluR6, CFTR). SGK1 further up-regulates a number of 
enzymes (e.g. glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2), and transcription factors 
(e.g. forkhead-transcription-factor FOXO3a, β-catenin, nuclear-factor-kappa-B NFκB). SGK1 
sensitive functions contribute to regulation of epithelial transport, excitability, degranulation, 
matrix protein deposition, coagulation, platelet aggregation, migration, cell proliferation, and 
apoptosis. Apparently, SGK1 is not required for housekeeping functions, as the phenotype of 
SGK1 knockout mice is mild. However, excessive SGK1 expression and activity participates in 
the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, 
stroke, inflammation, autoimmune disease, fibrosis, and tumor growth. A SGK1 gene variant 
(prevalence ~3-5% prevalence in Caucasians, ~10% in Africans) predisposes to hypertension, 
stroke, obesity, and type 2 diabetes. Moreover, excessive salt intake and/or excessive release of 
glucocorticoids, mineralocorticoids, and TGFβ up-regulates SGK1 expression thus predispos-
ing to SGK1-related diseases.
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Introduction 

The serum and glucocorticoid-inducible kinase 1 
(SGK1) was cloned as a gene up-regulated by serum 
and glucocorticoids in rat mammary tumor cells.1 
Human SGK1 was identified as a gene up-regulated 
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by cell shrinkage.2 SGK1 is ubiquitously expressed.2-5 
Following stimulation of cell proliferation with se-
rum, SGK1 may enter into the nucleus.4 Following 
hyperosmotic shock or glucocorticoids stimulation, 
SGK1 is localized mainly in the cytosol.1,4 SGK1 may 
further bind to the mitochondrial membrane.2

The gene encoding human SGK1 is located in 
chromosome 6q23.4 Several SGK1 variants have 
been identified differing in regulation of expression, 
subcellular localization and function.2,6 The present 
brief review discusses the function and pathophysi-
ological significance of SGK1. In order to limit ref-
erence numbers, reviews are cited instead of earlier 
publications.2,4,7-12

Regulation of SGK1 expression  
and activity 

SGK1 transcription is stimulated by hyperosmotic 
or isotonic cell shrinkage.4 Accordingly, SGK1 ex-
pression is increased by dehydration13 and a modest 
increase of extracellular salt concentration.14 Intestinal 
SGK1 is up-regulated by saline ingestion.15 SGK1 
transcription is further stimulated by excessive glucose 
concentrations and diabetes, A6 and M1 cell swelling, 
mechanical stress, Ca2+ chelation, metabolic acidosis, 
salt loading of spontaneously hypertensive mice, oxida-
tive stress, heat shock, UV radiation, DNA damage, 
ischemia, neuronal injury, neuronal excitotoxicity, 
neuronal challenge by exposure to microgravity, 
fear conditioning, plus maze exposure, enrichment 
training, amphetamine, lysergic acid dimethylamide 
(LSD), electroconvulsive therapy, sleep deprivation, 
antidepressant fluoxetine, testicular torsion, high-salt 
diet of salt-sensitive rats as well as high-fat diet.2,4,16-22

SGK1 transcription is further stimulated by sev-
eral hormones and mediators, such as glucocorti-
coids,1,2,23-28 mineralocorticoids,2,29-31 gonadotropins,4 
progestin,2,32 progesterone,4 1,25-dyhydroxyvitamin 
D3 (1,25(OH)2D3),4 erythropoietin,33 morphine,30 
transforming growth factor b (TGFβ),4 interleukin 
6,4 fibroblast and platelet-derived growth factor,4 
thrombin,2 endothelin,2,4 advanced glycation end 
products (AGE),4 further cytokines,4 and activation 
of peroxisome proliferator-activated receptor γ.2,4

SGK1 expression is enhanced in several diseases, 
such as diabetes, dialysis, glomerulonephritis, liver 

cirrhosis, fibrosing pancreatitis, Crohn’s disease, 
lung fibrosis, cardiac fibrosis, wound healing, organ 
rejection, and Rett syndrome.2,4,34

Factors down-regulating SGK1 transcription in-
clude serum starvation, heparin, dietary iron, nucleo-
sides, nephrilin, and mutations in the methyl-CpG-
binding protein 2 (MECP2) encoding gene.2,4,35-37 
SGK1 expression further declines with age.38

Signalling in transcriptional SGK1 regulation 
involves cytosolic Ca2+, cyclic AMP, stress-activated 
protein kinase-2 (SAPK2, p38 kinase), protein kinase 
C, protein kinase Raf, big mitogen-activated protein 
kinase 1 (BMK1), extracellular signal-regulated ki-
nase (ERK1/2), mitogen-activated protein kinase 
14 (MAPK14), phosphatidylinositide-(PI)-3-kinase, 
reactive oxygen species, NADPH oxidases, nitric 
oxide, and EWS/NOR1(NR4A3) fusion protein.2,4,39 
SGK1 expression is further stimulated by transcrip-
rion factor p53.40

The SGK1 promoter binds receptors for gluco-
corticoids (GR), mineralocorticoids (MR), proges-
terone (PR), 1,25(OH)2D3 (VDR), retinoids (RXR), 
farnesoids (FXR), sterol regulatory element binding 
protein (SREBP), peroxysome proliferator activator 
receptor gamma (PPARγ), cAMP response element 
binding protein (CREB), p53 tumor suppressor 
protein, Sp1 transcription factor, activating protein 
1 (AP1), activating transcription factor 6 (ATF6), 
heat shock factor (HSF), reticuloendotheliosis vi-
ral oncogene homolog (c-Rel), nuclear factor κB 
(NFκB), signal transducers and activators of tran-
scription (STAT), TGFβ-dependent transcription 
factors SMAD3 and SMAD4, and forkhead activin 
signal transducer (FAST).1 The SGK1 promotor fur-
ther harbors a tonicity-responsive enhancer (TonE) 
mediating suppression of SGK1 expression by the 
transcription factor TonE binding protein (TonEbP 
or NFAT5).2

SGK1 translation is triggered by phosphosphoinosi-
tide 3 kinase and dependent on actin polymerisation.41

SGK1 is activated by insulin, IGF1, hepatic growth 
factor (HGF), follicle stimulating hormone (FSH), 
thrombin, and corticosterone.4,42 The signalling in-
volves phosphosphoinositide 3 kinase (PI3-kinase) 
and 3-phosphoinositide (PIP3)-dependent kinase 
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PDK1.2 Interaction of SGK1 and PDK1 is fostered 
by the scaffold protein Na+/H+ exchanger regulat-
ing factor 2 (NHERF2).4 PIP3 is degraded by the 
phosphatase and tensin homolog PTEN, which thus 
abrogates PDK1-dependent SGK1 activation.4 SGK1 
could further be stimulated by mammalian target 
of rapamycin mTOR complex-2 (mTORC2) and 
WNK1 (with no lysine kinase 1).2,4,31,43-54 The SGK1 
activating mTOR complex 2 (mTORC2) involves 
mTOR, Rictor (rapamycin-insensitive companion 
of mTOR), Sin1 (stress-activated protein kinase-
interacting protein 1), mLST8, and Protor-1.48 SGK1 
is further activated by p38α, bone marrow kinase/
extracellular signal-regulated kinase 5 (BK/ERK5), 
cAMP, lithium, Ca2+-sensitive calmodulin-dependent 
protein kinase kinase (CaMKK), G-protein Rac1, 
neuronal depolarization, oxidation, hypertonicity, 
adhesion to fibronectin, and feeding.2,4,55

SGK1 is ubiquitinated by Nedd4-2 (neuronal 
precursor cells expressed developmentally down-reg-
ulated)4 and Rictor/Cullin-1,56-58 which trigger SGK1 
degradation. SGK1 ubiquitinylation and degradation 
are counteracted by glucocorticoid-induced leucine 
zipper protein-1.59

SGK1-sensitive functions

The consensus sequence for phosphorylation 
by SGK1 is R-X-R-X-X-(S/T)-phi (X = any amino 
acid, R = arginine, phi = hydrophobic amino acid).4 
The only known specific SGK1 targets are N-myc 
down-regulated genes NDRG1 and NDRG2.4,60,61 
Other SGK1 targets are shared by the other SGK 
isoforms, by protein kinase B (PKB/Akt) isoforms, 
and/or other kinases.

SGK1 modifies the activity of several enzymes, 
such as ubquitin ligase Nedd4-2,2,62 inducible nitric 
oxide synthase iNOS,2 phosphomannose mutase 2,4 
PIP2 forming phosphatidylinositol-3-phosphate-
5-kinase PIKfyve,2 serine/threonine kinase WNK 
(with no lysine) 4,2,54 extracellular signal-regulated 
kinase ERK2,63 mitogen-activated protein kinase/
ERK kinase kinase 3 MEKK3, stress-activated kinase 
SEK1,2 B-Raf kinase,4 and glycogen synthase kinase 
3 GSK3.4 By up-regulating ubiquitin ligase MDM2, 
SGK1 stimulates ubiquitylation and proteosomal 
degradation of the transcription factor p53.40 SGK1 
down-regulates Notch1-IC protein by stimulating 
Fbw7-dependent proteasomal degradation.64 

SGK1 increases transcription by cAMP responsive 
element binding protein (CREB),4,27 by activator pro-
tein-1,27 and by nuclear factor kappa B (NFκB).2,65-68 
SGK1 phosphorylates and thus activates NDRG1, 
which in turn down-regulates NFκB signalling.69 
Moreover, SGK1 down-regulates forkhead transcrip-
tion factor FKHR-L1 (FOXO3a).2,4,70,71

SGK1 up-regulates a myriad of ion channels,72 in-
cluding epithelial Na+ channel EnaC,2,4,6,46,73-89 voltage 
gated Na+ channel SCN5A,4 renal outer medullary 
K+ channel ROMK1,4,90-94 voltage gated K+ chan-
nels KCNE1/KCNQ1,95,96 KCNQ4,4 Kv1.3, Kv1.5,2 
Kv7.2/3,97 Kv4.3,4 hERG,98 the Ca2+ release-activated 
Ca2+ channels Orai1/STIM1,11,99 transient receptor 
potential channels TRPV4,100 TRPV54 and TRPV6,2 
kainate receptor GluR6,4 unselective cation chan-
nel 4F2/LAT,4 Cl- channels ClCka/barttin,2 ClC2,4 
CFTR (Cystic fibrosis tr ansmembrane conductance 
regulator)2,101-104 and VSOAC (volume-sensitive os-
molyte and anion channel),4 as well as acid sensing 
ion channel ASIC1.2

SGK1 stimulates a large number of carriers, 
including Na+, K+, 2Cl– cotransporter NKCC2,4 
NaCl cotransporter NCC,2,79,105-108 Na+/H+ exchang-
ers NHE167,67,109 and NHE3,2,15,110-113 glucose carri-
ers SGLT1,2,114 GLUT12 and GLUT4,2 amino acid 
transporters ASCT2,2 SN1,4 B(0)AT1,115 EAAT1,4 
EAAT2,4,116 EAAT3,4,117 EAAT42,118 and EAAT5,4 
peptide transporters PepT,2,119,120 Na+, dicarboxylate 
cotransporter NaDC-1,4 creatine transporter CreaT,4 
Na+, myoinositol cotransporter SMIT,2 as well as 
phosphate carriers NaPiIIa121 and NaPiIIb.4 SGK1 
further up-regulates the Na+/K+-ATPase2,4 and al-
bumin uptake.122,123

SGK1 phosphorylates nephrin, type A natriuretic 
peptide receptor (NPR-A), Ca2+ regulated heat-stable 
protein of apparent molecular mass 24 kDa CRHSP24, 
the adaptor precursor (APP) Fe65, NDRG1 and 
NDRG2, myosinVc, filamin C, microtubule-associated 
protein tau, and huntingtin.2,4,61,71,124

Cellular functions regulated by SGK1 include 
organization of the cytoskeleton,125 cellular K+ up-
take,2 cell volume regulation,2 cell survival & cell 
proliferation,126 tumor growth,10,127 cell migration,128,129 
renal tubular Na+ transport,2,4,84,106,130 renal tubular 
K+ transport,131 gastric acid secretion,2,132,133 intestinal 
transport,4 glucose metabolism,2 degranulation,125,134 
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hormone release,2,4 inflammatory and neuropathic 
pain2,135 muscle mass maintenance,136 and function of 
decidualizing cells.2 Moreover, SGK1 is required for 
nuclear export of the ribonucleoprotein of influenza 
A virus.137

SGK1-associated disease 

Hypertension

Owing to its stimulating effect on ENaC, SGK1 
enhances renal tubular salt reabsorption.2,9,84,130,138-141 
Moreover, SGK1 enhances the salt appetite.4,142,143 
Accordingly, increased SGK1 activity may lead to 
hypertension.79,141,144-147 Along those lines, blood pres-
sure is modified by several SGK1 gene variants,146 
including a combination of polymorphisms in intron 
6 [I6CC] and exon 8 [E8CC/CT].2,4 The prevalence of 
the combination appears to be lower in Caucasians 
(3-5%) than in Africans (10%).2,4 With regular diet 
blood pressure is similar in SGK1 knockout mice and 
their wild type littermates.4 Treatment with a high-
fructose diet or a high-fat diet leading to hyperinsulin-
ism, however, sensitizes blood pressure to high-salt 
intake in wild type mice but not in SGK1 knockout 
mice.4,148 Activation of SGK1 by insulin presumably 
stimulates renal tubular salt reabsorption and may 
possibly foster renal salt retention and hypertension 
in type II diabetes.2,4 SGK1 further contributes to 
glucocorticoid-induced hypertension.2 

Obesity

SGK1 stimulates the Na+ coupled glucose trans-
porter SGLT1 and thus accelerates intestinal glucose 
absorption.4 Enhanced SGLT1 activity is in turn known 
to foster development of obesity, an effect presumably 
due to rapid increase of plasma glucose concentra-
tion with excessive insulin release and subsequent fat 
deposition.2,4 SGK1 further stimulates adipocyte dif-
ferentiation and adipogenesis.149 Along those lines, 
body weight and prevalence of type 2 diabetes are 
enhanced in carriers of the I6CC/E8CC/CT SGK1 
gene variant.2 The hyperglycemia of diabetic indi-
viduals could stimulate intestinal SGK1 expression, 
followed by up-regulation of SGLT1 activity and 
further weight gain. 

Hypercoagulability, thrombosis, and stroke

SGK1 stimulates coagulation by stimulating tis-

sue factor expression2 and increases the reagibility 
of blood platelets by up-regulation of NFκB and 
subsequent expression of the platelet Ca2+ channel 
Orai1/STIM1.65 Enhanced coagulation and platelet 
reagibility predispose to the occurrence of stroke150 
and thrombosis.65

Inflammation and fibrosis

SGK1 up-regulates pathogenic IL-23-dependent 
interleukin (IL)-17-producing CD4+ helper T cells 
(TH17 cells),151 which play a decisive role in autoim-
mune disease.151 The up-regulation of those cells by 
IL-23 requires SGK1, which is critical for the expres-
sion of the IL23 receptor.14 SGK1 becomes effective 
by deactivation of Foxo1, a direct repressor of IL-23R 
expression.14 TH17 cells are further up-regulated by 
modest increases of local NaCl concentrations,14 
which activates the p38/MAPK pathway again involv-
ing SGK1 and nuclear factor of activated T cells 5 
(NFAT5, TONEBP).151 Following NaCl exposure, 
TH17 cells up-regulate the pro-inflammatory cytokines 
GM-CSF, TNF-α, and IL-2. As a result, mice fed with 
a high-salt diet develop a particularly severe form of 
experimental autoimmune encephalomyelitis paral-
leled by enhanced infiltration of TH17 cells into the 
central nervous system.151 

SGK1 is up-regulated by TGFβ,4 a key stimulator 
of fibrosis.152-158 TGFβ up-regulates the transcription 
factors Smad2/3.159 SGK1 phosphorylates and thus 
inactivates Nedd4L, a ubiquitin ligase triggering the 
degradation of Smad2/3.159 SGK1 expression is exces-
sive in affected tissues of inflammatory and fibrosing 
diseases, such as lung fibrosis, diabetic nephropathy, 
glomerulonephritis, experimental nephrotic syndrome, 
obstructive nephropathy, liver scirrhosis, fibrosing 
pancreatitis, peritoneal fibrosis, Crohn’s disease, and 
coeliac disease.4,160-163 SGK1 fosters nuclear trans-
location of NFκB, which stimulates expression of 
connective tissue growth factor (CTGF),4 triggers 
prostaglandin formation,164 modifies cell survival,165-168 
and thus participates in the signalling of inflammation 
and fibrosis.169-172 Along those lines, SGK1 is required 
for the effect of excessive glucose concentrations on 
the formation of the matrix protein fibronectin.173 
Overexpression of SGK1 alone, however, does not 
appreciably up-regulate fibronectin formation, indi-
cating that additional glucose-dependent mechanisms 
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are required for the induction of fibrosis by hypergly-
cemia.173 SGK1 is required for the up-regulation of 
CTGF formation and cardiac fibrosis following treat-
ment of mice with the mineralocorticoid DOCA4 and 
mineralocorticoid-induced aging of the skin.31 SGK1 
is involved in angiotensin II-induced cardiac CTGF 
formation and fibrosis174,175 and in cardiac remodelling 
following increased afterload.109,176,177

Tumor growth

High levels of SGK1 expression have been ob-
served in several tumors,10 including colon cancer,10 
myeloma,178 medulloblastoma,179 prostate cancer,180 
ovarian tumors,25 and non-small cell lung cancer.181 
SGK1 may support survival of tumor cells.4,7,25,40,127,182 
For instance, SGK1 may mediate interleukin 6 (IL6)-
dependent survival of cholangiocarcinoma cells,4,10 
interleukin 2 (IL2)-dependent survival of kidney 
cancer cells,40 angiotensin II-induced survival of 
fibrosarcoma-derived cells,183 and androgen receptor-
mediated survival of prostate cancer cells.143,184 SGK1 
further confers resistance of breast cancer cells to 
chemotherapy and SGK1 silencing increases the 
toxicity of chemotherapeutic drugs.4,10,185

Inhibition of SGK1 slows androgen-induced growth 
of prostate cancer cells. 2 SGK1 contributes to glu-
cocorticoid- or colony-stimulating factor 1 (CSF1)-
induced stimulation of invasiveness, motility, and 
adhesiveness.4,10 Moreover, SGK1 counteracts the 
signalling of proapoptotic membrane androgen re-
ceptors186-188 and regulates the membrane androgen 
receptor-induced signal transduction controlling actin 
cytoskeleton architecture and migration in colon 
tumor cells.128,129,189

SGK1-sensitive signalling counteracting apoptosis 
include phosphorylation and thus inactivation of the 
proapoptotic forkhead transcription factor Foxo3a/ 
FKRHL1.70 SGK1 further phosphorylates and thus 
inhibits glycogen synthase kinase GSK3, a kinase 
down-regulating oncogenic β-catenin.4,7 SGK1 defi-
ciency thus decreases β-catenin protein abundance.2 
SGK1 may inhibit apoptosis further by phosphoryla-
tion of IKKb with subsequent phosphorylation and 
degradation of the inhibitory protein IκB, thus leading 
to translocation of NFκB into the nucleus.10 SGK1 
further phosphorylates the ubiquitin ligase MDM2 
with subsequent MDM2-dependent ubiquitylation 

and proteosomal degradation of proapoptotic tran-
scription factor p53.40 The down-regulation of p53 
abundance by SGK1 stimulates cell proliferation 
and transition of epithelial cells into mesenchymal 
cell types.40 SGK1 further up-regulates Ran binding 
protein (RanBP), which in turn influences microtu-
bules and decreases taxol sensitivity of cancer cells.190 
SGK1 has been reported to either down-regulate or 
to enhance ERK2 activity and MEK/ERK complex 
formation.2,10,63 SGK1 phosphorylates SEK1 and thus 
interferes with the binding of SEK1 to JNK1 and 
MEKK1.4,10 Finally, SGK1 down-regulates vinculin 
phosphorylation, which in turn may enhance migra-
tion via actin cytoskeleton redistribution.128,129

SGK1 may influence cell proliferation and cell 
death further by influencing the activity of channels 
and transporters, such as Ca2+ release-activated 
channels (ICRAC) Orai1/STIM165,66,99 and K+ channels, 
such as voltage-sensitive K+ channel Kv1.3.4,10 The 
K+ channels maintain the cell membrane potential 
required for opening of ICRAC.4,10 Ca2+ entry via ICRAC 
triggers oscillations of cytosolic Ca2+ activity, which 
are required for triggering of cell proliferation.4,10 

SGK1 is up-regulated by ischemia and may be 
particularly important for survival of tumor cells 
during ischemia.2,4,10,33 SGK1 may counteract energy 
depletion of tumor cells by stimulation of glucose 
uptake.4 Moreover, SGK1-sensitive stimulation of 
the Na+/H+ ion exchanger may lead to cytosolic 
alkalinization,67 which enhances the glycolytic flux.191 

A positive correlation between SGK1 abundance 
and patient survival was paradoxically observed in 
adrenocortical carcinoma.192,193 Moreover, SGK1 
abundance is reportedly down-regulated in several 
tumors, such as prostate cancer, ovarian tumors, 
hepatocellular carcinoma, and adenomatous poly-
posis coli (APC).4,10,194 Development of those tumors 
thus appears to be independent from SGK1. Genetic 
SGK1 knockout, however, decreases the develop-
ment of spontaneous tumors in APC deficient mice2 
and chemically induced colonic tumors in wild type 
mice.195 It is tempting to speculate that high activity 
of PKB/Akt isoforms or SGK3 in tumor cells leads to 
down-regulation of SGK1 expression and decreases 
the requirement of SGK1 for tumor cell survival.

The mild phenotype of SGK1 knockout mice 
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illustrates that, despite its multiple effects on cell 
proliferation and apoptosis, SGK1 is not critically 
important for cell proliferation and survival.4,10 Thus, 
inhibition of SGK1 alone is presumably not sufficient 
to eliminate tumor cells. Nevertheless, particuarly 
in tumor cells with high SGK1 expression levels, 
SGK1 may contribute to the maintenance of tumor 
cell survival and resistance of tumor cells to ischema 
and therapy.12
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